A solar cycle clock for extreme space weather

Author:

Chapman S. C.,Dudok de Wit T.

Abstract

AbstractThe variable solar cycle of activity is a long-standing problem in physics. It modulates the overall level of space weather activity at earth, which in turn can have significant societal impact. The Hilbert transform of the sunspot number is used to map the variable length, approximately 11 year Schwabe cycle onto a uniform clock. The clock is used to correlate extreme space weather seen in the aa index, the longest continuous geomagnetic record at earth, with the record of solar active region areas and latitudes since 1874. This shows that a clear switch-off of the most extreme space weather events occurs when $$>90$$ > 90 % of solar active region areas have moved to within about 15° of the solar equator, from regions of high gradient in solar differential rotation which can power coronal mass ejections, to a region where solar differential rotation is almost constant with latitude. More moderate space weather events which coincide with 27 day solar rotation recurrences in the aa index, consistent with stable, persistent source regions of high speed streams, commence when the centroid of solar active region areas moves to within 15° of the solar equator. This offers a physical explanation for the longstanding identification of a two component cycle of activity in the aa index.

Funder

Air Force Office of Scientific Research

STFC

International Space Science Institute

CNES

UiT The Arctic University of Norway

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3