Multi-Variate LSTM Prediction of Alaska Magnetometer Chain Utilizing a Coupled Model Approach

Author:

Blandin Matthew,Connor Hyunju K.,Öztürk Doğacan S.,Keesee Amy M.,Pinto Victor,Mahmud Md Shaad,Ngwira Chigomezyo,Priyadarshi Shishir

Abstract

During periods of rapidly changing geomagnetic conditions electric fields form within the Earth’s surface and induce currents known as geomagnetically induced currents (GICs), which interact with unprotected electrical systems our society relies on. In this study, we train multi-variate Long-Short Term Memory neural networks to predict magnitude of north-south component of the geomagnetic field (|BN|) at multiple ground magnetometer stations across Alaska provided by the SuperMAG database with a future goal of predicting geomagnetic field disturbances. Each neural network is driven by solar wind and interplanetary magnetic field inputs from the NASA OMNI database spanning from 2000–2015 and is fine tuned for each station to maximize the effectiveness in predicting |BN|. The neural networks are then compared against multivariate linear regression models driven with the same inputs at each station using Heidke skill scores with thresholds at the 50, 75, 85, and 99 percentiles for |BN|. The neural network models show significant increases over the linear regression models for |BN| thresholds. We also calculate the Heidke skill scores for d|BN|/dt by deriving d|BN|/dt from |BN| predictions. However, neural network models do not show clear outperformance compared to the linear regression models. To retain the sign information and thus predict BN instead of |BN|, a secondary so-called polarity model is utilized. The polarity model is run in tandem with the neural networks predicting geomagnetic field in a coupled model approach and results in a high correlation between predicted and observed values for all stations. We find this model a promising starting point for a machine learned geomagnetic field model to be expanded upon through increased output time history and fast turnaround times.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3