Affiliation:
1. Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA
2. Department of Atmospheric and Oceanic Sciences University of California Los Angeles Los Angeles CA USA
3. Department of Earth, Planetary and Space Sciences University of California Los Angeles Los Angeles CA USA
Abstract
AbstractA predictive model for the variation of ionospheric currents is of great scientific and practical importance to our modern industrial society. To study the response of ionospheric currents to external drivers including geomagnetic indices and solar radiation, we developed a feedforward neural network model trained on the Equivalent Ionospheric Current (EIC) data from 1st January 2007 to 31st December 2019. Due to the highly imbalanced nature of the ionospheric currents data, which means that the data of extreme events are much less than those of quiet times, we utilized different loss functions to improve the model performance. Our model demonstrates the potential to predict the active events of ionospheric currents reasonably well (e.g., EICs during substorms) within a timescale of a few minutes. Although the data used for training are measurements over the North American and Greenland sectors, our model is not only able to predict EICs within this region, but is also able to provide a promising out‐of‐sample prediction on a global scale.
Publisher
American Geophysical Union (AGU)