Probabilistic Forecasting of Ground Magnetic Perturbation Spikes at Mid‐Latitude Stations

Author:

Coughlan Michael12ORCID,Keesee Amy12ORCID,Pinto Victor34ORCID,Mukundan Raman12ORCID,Marchezi José Paulo12ORCID,Johnson Jeremiah5ORCID,Connor Hyunju6ORCID,Hampton Don7ORCID

Affiliation:

1. Department of Physics & Astronomy University of New Hampshire Durham NH USA

2. Institute for the Study of Earth, Oceans, & Space University of New Hampshire Durham NH USA

3. Departamento de Fisica Universidad de Santiago de Chile Santiago Chile

4. Center for Interdisciplinary Research in Astrophysics and Space Exploration (CIRAS) Universidad de Santiago de Chile Santiago Chile

5. Department of Electrical & Computer Engineering University of New Hampshire Manchester NH USA

6. NASA Goddard Space Flight Center Greenbelt MD USA

7. Geophysical Institute University of Alaska Fairbanks Fairbanks AK USA

Abstract

AbstractThe prediction of large fluctuations in the ground magnetic field (dB/dt) is essential for preventing damage from Geomagnetically Induced Currents. Directly forecasting these fluctuations has proven difficult, but accurately determining the risk of extreme events can allow for the worst of the damage to be prevented. Here we trained Convolutional Neural Network models for eight mid‐latitude magnetometers to predict the probability that dB/dt will exceed the 99th percentile threshold 30–60 min in the future. Two model frameworks were compared, a model trained using solar wind data from the Advanced Composition Explorer (ACE) satellite, and another model trained on both ACE and SuperMAG ground magnetometer data. The models were compared to examine if the addition of current ground magnetometer data significantly improved the forecasts of dB/dt in the future prediction window. A bootstrapping method was employed using a random split of the training and validation data to provide a measure of uncertainty in model predictions. The models were evaluated on the ground truth data during eight geomagnetic storms and a suite of evaluation metrics are presented. The models were also compared to a persistence model to ensure that the model using both datasets did not over‐rely on dB/dt values in making its predictions. Overall, we find that the models using both the solar wind and ground magnetometer data had better metric scores than the solar wind only and persistence models, and was able to capture more spatially localized variations in the dB/dt threshold crossings.

Funder

Office of Experimental Program to Stimulate Competitive Research

Goddard Space Flight Center

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3