Exact solution to the problem of slow oscillations in coronal loops and its diagnostic applications

Author:

Zavershinskii Dmitrii I.,Molevich Nonna E.,Riashchikov Dmitrii S.,Belov Sergey A.

Abstract

Magnetoacoustic oscillations are nowadays routinely observed in various regions of the solar corona. This allows them to be used as means of diagnosing plasma parameters and processes occurring in it. Plasma diagnostics, in turn, requires a sufficiently reliable MHD model to describe the wave evolution. In our paper, we focus on obtaining the exact analytical solution to the problem of the linear evolution of standing slow magnetoacoustic (MA) waves in coronal loops. Our consideration of the properties of slow waves is conducted using the infinite magnetic field assumption. The main contribution to the wave dynamics in this assumption comes from such processes as thermal conduction, unspecified coronal heating, and optically thin radiation cooling. In our consideration, the wave periods are assumed to be short enough so that the thermal misbalance has a weak effect on them. Thus, the main non-adiabatic process affecting the wave dynamics remains thermal conduction. The exact solution of the evolutionary equation is obtained using the Fourier method. This means that it is possible to trace the evolution of any harmonic of the initial perturbation, regardless of whether it belongs to entropy or slow mode. We show that the fraction of energy between entropy and slow mode is defined by the thermal conduction and coronal loop parameters. It is shown for which parameters of coronal loops it is reasonable to associate the full solution with a slow wave, and when it is necessary to take into account the entropy wave. Furthermore, we obtain the relationships for the phase shifts of various plasma parameters applicable to any values of harmonic number and thermal condition coefficient. In particular, it is shown that the phase shifts between density and temperature perturbations for the second harmonic of the slow wave vary between π/2 to 0, but are larger than for the fundamental harmonic. The obtained exact analytical solution could be further applied to the interpretation of observations and results of numerical modelling of slow MA waves in the corona.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3