Magnetoacoustic waves in a partially ionized astrophysical plasma with the thermal misbalance: A two-fluid approach

Author:

Molevich N. E.12ORCID,Pichugin S. Yu.1ORCID,Riashchikov D. S.12ORCID

Affiliation:

1. Department of Theoretical Physics, Lebedev Physical Institute 1 , Novo-Sadovaya st. 221, Samara 443011, Russia

2. Department of Physics, Samara National Research University 2 , Moscovskoe sh. 34, Samara 443086, Russia

Abstract

We consider the propagation of magnetoacoustic (MA) and acoustic waves of various frequency ranges in a partially ionized plasma at an arbitrary angle to the magnetic field, taking into account the influence of heating, radiative, and thermo-conductive cooling, as well as ion-neutral collisions. A dispersion equation that describes the evolution of nine modes was obtained in a compact mathematical form using the two-fluid model. The number and type of propagating waves (modified fast and slow MA waves, MA waves in the ion component, acoustic waves in the neutral component, as well as isothermal MA and isothermal acoustic waves) vary in different frequency ranges depending on the parameters of the medium. Analytical expressions are found for the speed and damping rates of all these propagating waves, and it is shown how dispersion and damping are formed by three processes: thermal misbalance, ion-neutral collisions, and thermal conductivity. Comparison of analytical calculations of the velocity and damping rates of MA waves with the numerical solution of the dispersion relation under conditions characteristic of the low solar atmosphere and prominences showed high accuracy of the obtained analytical expressions. The strong influence of thermal misbalance caused by gasdynamic perturbations on the speed and damping rate of modified magnetoacoustic waves in a strongly coupled region is shown as well.

Funder

Russian Science Foundation

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3