Gut Microbiota Modulate Rabbit Meat Quality in Response to Dietary Fiber

Author:

Liu Boshuai,Cui Yalei,Ali Qasim,Zhu Xiaoyan,Li Defeng,Ma Sen,Wang Zhichang,Wang Chengzhang,Shi Yinghua

Abstract

Antibiotics are widely used in gastrointestinal diseases in meat rabbit breeding, which causes safety problems for meat products. Dietary fiber can regulate the gut microbiota of meat rabbits, but the mechanism of improving meat quality is largely unknown. The objective of this study was to evaluate the effects of adding different fiber sources to rabbit diets on the growth performance, gut microbiota composition, and muscle metabolite composition of meat rabbits. A total of 18 New Zealand white rabbits of similar weight (40 ± 1 day old) were randomly assigned to beet pulp treatment (BP), alfalfa meal treatment (AM), and peanut vine treatment (PV). There were 6 repeats in each treatment and all were raised in a single cage. The predictive period was 7 days and the experimental period was 40 days. The results revealed that AM and PV supplementation increased growth performance, slaughter performance, and intestinal development of meat rabbits compared with the BP treatment, and especially the effect of AM treatment was better. The content of butyric acid was increased in PV and AM treatments compared with the BP treatment. The expression of mitochondrial biosynthesis genes of liver, cecum, and muscle showed that AM treatment increased gene expression of CPT1b compared to the BP treatment. In addition, AM and PV treatments significantly increased the microbial diversity and richness compared with BP treatment, and their bacterial community composition was similar, and there were some differences between AM and PV treatments and BP treatment. Metabonomics analysis of muscle showed that AM treatment significantly increased amino acid and fatty acid metabolites compared with BP treatment, which were mainly concentrated in energy metabolism, amino acid metabolism, and fatty acid regulation pathways. Furthermore, through correlation analysis, it was found that there was a significant correlation between rumenococci in the cecum and amino acid metabolites in the muscle. Overall, these findings indicate that AM may affect the body's health by changing its gut microbiota, and then improving meat quality, and the intestinal–muscle axis provides a theoretical basis.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3