Statistical Optimization of Novel Medium to Maximize the Yield of Exopolysaccharide From Lacticaseibacillus rhamnosus ZFM216 and Its Immunomodulatory Activity

Author:

Chen Liang,Gu Qing,Zhou Tao

Abstract

The traditional media used for the fermentation of Lactobacilli always contain carbohydrate polymers, which interfere with the analysis of the exopolysaccharide (EPS) produced by the bacteria. In this investigation, a novel medium formulation that could avoid such interference was successfully developed. The beef extract, yeast extract, and peptone used in this formulation were subjected to the removal of polysaccharides before use. The factors affecting the EPS production were optimized by a single factor test, Plackett–Burman design, and Box–Behnken design. The optimum formula was ascertained as: 7.5 g L–1 yeast extract, 12.5 g L–1 beef extract, 10 g L–1 peptone, 21.23 g L–1 maltose, 5.51 g L–1 yeast nitrogen base, 2 g L–1 K2HPO4, 5 g L–1 anhydrous sodium acetate, 2 g L–1 ammonium citrate, 0.58 g L–1 MgSO4⋅7H2O, 0.25 g L–1 MnSO4⋅H2O, and 1 mL L–1 Tween 80. The initial pH of the medium was 6.5. The optimized conditions for fermentation of the strain to produce EPS were as follows: seed size 1%, culture temperature 37°C, and culture time 20 h. Optimum results showed that EPS yield was 496.64 ± 3.15 mg L–1, being 76.70% higher than that of unoptimized conditions (281.07 ± 5.90 mg L–1). The EPS was mainly comprised of glucose and guluronic acid, with a weight average molecular weight of 19.9 kDa; it was also characterized by Fourier transform infrared spectroscopy and UV analysis. EPS was found to significantly enhance the phagocytic capacity, promote the NO, TNF-α, IL-1β, and IL-6 secretion, and improve mRNA expression of cytokines in RAW 264.7 macrophages, indicating its considerable immunomodulatory activity. Western bolt and immunofluorescence results demonstrated that the EPS was able to increase p65 nuclear translocation in the macrophages, indicating that EPS enhanced immunity via the NF-κB signaling pathway. EPS investigated in this work has potential as an attractive functional food supplement candidate for the hypoimmunity population.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3