Modeling and Optimization of the Culture Medium for Efficient 4′-N-Demethyl-Vicenistatin Production by Streptomyces parvus Using Response Surface Methodology and Artificial-Neural-Network-Genetic-Algorithm

Author:

Yu Zhixin1,Fu Hongxin123,Wang Jufang123ORCID

Affiliation:

1. School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China

2. Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China

3. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510006, China

Abstract

4′-N-demethyl-vicenistatin is a vicenistatin analogue that has better antitumor activity with promising applications in the pharmaceuticals industry. The harnessing of the complete potential of this compound necessitates a systematic optimization of the culture medium to enable the cost-effective production of 4′-N-demethyl-vicenistatin by Streptomyces parvus SCSIO Mla-L010/ΔvicG. Therefore, in this study, a sequential approach was employed to screen the significant medium compositions, as follows: one-factor-at-a-time (OFAT) and Plackett–Burman designs (PBD) were initially utilized. Cassava starch, glycerol, and seawater salt were identified as the pivotal components influencing 4′-N-demethyl-vicenistatin production. To further investigate the direct and interactive effects of these key components, a three-factor, five-level central composite design (CCD) was implemented. Finally, response surface methodology (RSM) and an artificial-neural-network-genetic-algorithm (ANN-GA) were employed for the modeling and optimization of the medium components to enhance efficient 4′-N-demethyl-vicenistatin production. The ANN-GA model showed superior reliability, achieving the most 4′-N-demethyl-vicenistatin, at 0.1921 g/L, which was 17% and 283% higher than the RSM-optimized and initial medium approaches, respectively. This study represents pioneering work on statistically guided optimization strategies for enhancing 4′-N-demethyl-vicenistatin production through medium optimization.

Funder

Key-Area Research and Development Program of Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3