MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking

Author:

Piga Nicola A.,Bottarel Fabrizio,Fantacci Claudio,Vezzani Giulia,Pattacini Ugo,Natale Lorenzo

Abstract

Tracking the 6D pose and velocity of objects represents a fundamental requirement for modern robotics manipulation tasks. This paper proposes a 6D object pose tracking algorithm, called MaskUKF, that combines deep object segmentation networks and depth information with a serial Unscented Kalman Filter to track the pose and the velocity of an object in real-time. MaskUKF achieves and in most cases surpasses state-of-the-art performance on the YCB-Video pose estimation benchmark without the need for expensive ground truth pose annotations at training time. Closed loop control experiments on the iCub humanoid platform in simulation show that joint pose and velocity tracking helps achieving higher precision and reliability than with one-shot deep pose estimation networks. A video of the experiments is available as Supplementary Material.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference34 articles.

1. A method for registration of 3-D shapes;Besl;IEEE Trans. Pattern Anal. Mach. Intell.,1992

2. Tracking for fully actuated mechanical systems: a geometric framework;Bullo;Automatica,1999

3. The YCB object and model set: towards common benchmarks for manipulation research;Calli,2015

4. Fast approximate furthest neighbors with data-dependent candidate selection;Curtin,2016

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Object Permanence Filter for Robust Tracking with Interactive Robots;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. The Treachery of Images: Bayesian Scene Keypoints for Deep Policy Learning in Robotic Manipulation;IEEE Robotics and Automation Letters;2023-11

3. Touch if it's Transparent! ACTOR: Active Tactile-Based Category-Level Transparent Object Reconstruction;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

4. 6D Object Pose Tracking with Optical Flow Network for Robotic Manipulation;IFAC-PapersOnLine;2023

5. An Improved Approach to 6D Object Pose Tracking in Fast Motion Scenarios;2022 Sixth IEEE International Conference on Robotic Computing (IRC);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3