Author:
Lee Michael S.,Admoni Henny,Simmons Reid
Abstract
As robots continue to acquire useful skills, their ability to teach their expertise will provide humans the two-fold benefit of learning from robots and collaborating fluently with them. For example, robot tutors could teach handwriting to individual students and delivery robots could convey their navigation conventions to better coordinate with nearby human workers. Because humans naturally communicate their behaviors through selective demonstrations, and comprehend others’ through reasoning that resembles inverse reinforcement learning (IRL), we propose a method of teaching humans based on demonstrations that are informative for IRL. But unlike prior work that optimizes solely for IRL, this paper incorporates various human teaching strategies (e.g. scaffolding, simplicity, pattern discovery, and testing) to better accommodate human learners. We assess our method with user studies and find that our measure of test difficulty corresponds well with human performance and confidence, and also find that favoring simplicity and pattern discovery increases human performance on difficult tests. However, we did not find a strong effect for our method of scaffolding, revealing shortcomings that indicate clear directions for future work.
Funder
Office of Naval Research
Defense Advanced Research Projects Agency
Subject
Artificial Intelligence,Computer Science Applications
Reference44 articles.
1. Apprenticeship Learning via Inverse Reinforcement Learning;Abbeel,2004
2. Simple Rl: Reproducible Reinforcement Learning in python;Abel,2019
3. Practical Statistics for Medical Research
4. Highlights: Summarizing Agent Behavior to People;Amir,2018
5. Summarizing Agent Strategies;Amir;Auton. Agent Multi-agent Syst.,2019
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献