Anthropomorphic Grasping of Complex-Shaped Objects Using Imitation Learning

Author:

Yi Jae-BongORCID,Kim JoonyoungORCID,Kang TaewoongORCID,Song DongwoonORCID,Park Jinwoo,Yi Seung-JoonORCID

Abstract

This paper presents an autonomous grasping approach for complex-shaped objects using an anthropomorphic robotic hand. Although human-like robotic hands have a number of distinctive advantages, most of the current autonomous robotic pickup systems still use relatively simple gripper setups such as a two-finger gripper or even a suction gripper. The main difficulty of utilizing human-like robotic hands lies in the sheer complexity of the system; it is inherently tough to plan and control the motions of the high degree of freedom (DOF) system. Although data-driven approaches have been successfully used for motion planning of various robotic systems recently, it is hard to directly apply them to high-DOF systems due to the difficulty of acquiring training data. In this paper, we propose a novel approach for grasping complex-shaped objects using a high-DOF robotic manipulation system consisting of a seven-DOF manipulator and a four-fingered robotic hand with 16 DOFs. Human demonstration data are first acquired using a virtual reality controller with 6D pose tracking and individual capacitive finger sensors. Then, the 3D shape of the manipulation target object is reconstructed from multiple depth images recorded using the wrist-mounted RGBD camera. The grasping pose for the object is estimated using a residual neural network (ResNet), K-means clustering (KNN), and a point-set registration algorithm. Then, the manipulator moves to the grasping pose following the trajectory created by dynamic movement primitives (DMPs). Finally, the robot performs one of the object-specific grasping motions learned from human demonstration. The suggested system is evaluated by an official tester using five objects with promising results.

Funder

Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea governmen

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification, Advanced Technologies, and Typical Applications of End-Effector for Fruit and Vegetable Picking Robots;Agriculture;2024-08-08

2. Anthropomorphic motion planning for multi-degree-of-freedom arms;Frontiers in Bioengineering and Biotechnology;2024-05-28

3. Design of Non-Anthropomorphic Hands: A Comparative Review;2023 16th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS);2023-10-25

4. Automatic System for Clamping Objects on Rotary Executive Links of Robotics for Safety Critical Application: Solution and Software for Modelling;2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT);2023-10-13

5. Remote Control Device to Drive the Arm Gestures of an Assistant Humanoid Robot;Applied Sciences;2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3