Caterpillar-Induced Volatile Emissions in Cotton: The Relative Importance of Damage and Insect-Derived Factors

Author:

Arce Carla M.,Besomi Gaia,Glauser Gaétan,Turlings Ted C. J.

Abstract

In response to herbivore attack, plants release large amounts of volatiles that can serve as attractants for the natural enemies of the attacking herbivores. Such responses are typically triggered by damage- and insect-associated factors. Cotton plants are somewhat peculiar because they release specific blends of volatiles in two waves in response to caterpillar attack. They first emit constitutively stored volatile compounds, and after about 24 h a second wave that includes various de novo synthesized compounds. The relative importance of damage-associated and insect associated-factors in this induction of cotton volatile emissions is not yet fully clear. We evaluated how cotton plants respond to mechanical damage and to the application of the oral secretion from the generalist lepidopteran pest Spodoptera exigua, by measuring the local and systemic emissions of volatile compounds from their leaves. Our results confirm that cotton plants respond to damage-associated molecular patterns (DAMPs) as well as to herbivore-associated molecular patterns (HAMPs) present in the caterpillars’ oral secretion. Interestingly, a stronger response was observed for cotton plants that were treated with oral secretion from cotton-fed caterpillars than those fed on maize. We tested the possibility that volicitin, a common fatty acid-derived elicitor in caterpillar regurgitant plays a role in this difference. Volicitin and volicitin-like compounds were detected in equal amounts in the oral secretion of S. exigua fed on either cotton or maize leaves. We conclude that other elicitors must be involved. The identification of these eliciting cues is expected to contribute to the development of novel strategies to enhance the resistance of cotton plants to insect pests.

Funder

Swiss National Science Foundation

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3