Fall Armyworm-Associated Gut Bacteria Modulate Plant Defense Responses

Author:

Acevedo Flor E.1,Peiffer Michelle1,Tan Ching-Wen1,Stanley Bruce A.2,Stanley Anne2,Wang Jie13,Jones Asher G.1,Hoover Kelli1,Rosa Cristina4,Luthe Dawn5,Felton Gary1

Affiliation:

1. Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, 16802, U.S.A.;

2. Section of Research Resources, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, 17033, U.S.A.;

3. Department of Ecology, South China Agricultural University, Guangzhou, Guangdong 510640, China;

4. Department of Plant Pathology, The Pennsylvania State University, 321 Buckhout Lab; and

5. Department of Plant Science, The Pennsylvania State University, 216 Agricultural Sciences and Industries Building

Abstract

Mechanical damage caused by insect feeding along with components present in insect saliva and oral secretions are known to induce jasmonic acid–mediated defense responses in plants. This study investigated the effects of bacteria from oral secretions of the fall armyworm Spodoptera frugiperda on herbivore-induced defenses in tomato and maize plants. Using culture-dependent methods, we identified seven different bacterial isolates belonging to the family Enterobacteriacea from the oral secretions of field-collected caterpillars. Two isolates, Pantoea ananatis and Enterobacteriaceae-1, downregulated the activity of the plant defensive proteins polyphenol oxidase and trypsin proteinase inhibitors (trypsin PI) but upregulated peroxidase (POX) activity in tomato. A Raoultella sp. and a Klebsiella sp. downregulated POX but upregulated trypsin PI in this plant species. Conversely, all of these bacterial isolates upregulated the expression of the herbivore-induced maize proteinase inhibitor (mpi) gene in maize. Plant treatment with P. ananatis and Enterobacteriaceae-1 enhanced caterpillar growth on tomato but diminished their growth on maize plants. Our results highlight the importance of herbivore-associated microbes and their ability to mediate insect plant interactions differently in host plants fed on by the same herbivore.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3