Volatiles from cotton aphid (Aphis gossypii) infested plants attract the natural enemy Hippodamia variegata

Author:

Yi Chaoqun,Teng Dong,Xie Jiaoxin,Tang Haoyu,Zhao Danyang,Liu Xiaoxu,Liu Tinghui,Ding Wei,Khashaveh Adel,Zhang Yongjun

Abstract

The Aphis gossypii is a major threat of cotton worldwide due to its short life cycle and rapid reproduction. Chemical control is the primary method used to manage the cotton aphid, which has significant environmental impacts. Therefore, prioritizing eco-friendly alternatives is essential for managing the cotton aphid. The ladybird, Hippodamia variegata, is a predominant predator of the cotton aphid. Its performance in cotton plantation is directly linked to chemical communication, where volatile compounds emitted from aphid-infested plants play important roles in successful predation. Here, we comprehensively studied the chemical interaction between the pest, natural enemy and host plants by analyzing the volatile profiles of aphid-infested cotton plants using gas chromatography-mass spectrometry (GC-MS). We then utilized the identified volatile compounds in electrophysiological recording (EAG) and behavioral assays. Through behavioral tests, we initially demonstrated the clear preference of both larvae and adults of H. variegata for aphid-infested plants. Subsequently, 13 compounds, namely α-pinene, cis-3-hexenyl acetate, 4-ethyl-1-octyn-3-ol, β-ocimene, dodecane, E-β-farnesene, decanal, methyl salicylate, β-caryophyllene, α-humulene, farnesol, DMNT, and TMTT were identified from aphid-infested plants. All these compounds were electrophysiologically active and induced detectable EAG responses in larvae and adults. Y-tube olfactometer assays indicated that, with few exceptions for larvae, all identified chemicals were attractive to H. variegata, particularly at the highest tested concentration (100 mg/ml). The outcomes of this study establish a practical foundation for developing attractants for H. variegata and open avenues for potential advancements in aphid management strategies by understanding the details of chemical communication at a tritrophic level.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3