Assessing heat tolerance in potatoes: Responses to stressful Texas field locations and controlled contrasting greenhouse conditions

Author:

Gautam Sanjeev,Scheuring Douglas C.,Koym Jeffrey W.,Vales M. Isabel

Abstract

In recent years, heat stress has affected potato production more frequently, resulting in lower marketable yields and reduced tuber quality. In order to develop heat-tolerant potatoes, it is necessary to select under heat-stress conditions and consider traits affected by heat stress. The Texas A&M Potato Breeding Program has selected potatoes under high-temperature stress for several decades. Ten potato cultivars, representing heat tolerant and sensitive clones based on past performance in Texas, were included in field trials for three years at the two main locations used by the Texas Breeding Program (Dalhart and Springlake, TX) to assess if the Texas field locations are suitable for heat tolerance screening. Both locations were confirmed as appropriate for heat stress screening. However, Springlake was a more stressful location since it had significantly lower yields of marketable tubers and increased percentages of tuber defects. Planting time did not have a significant effect at the most stressful location. The same ten potato clones were included in greenhouse experiments with contrasting temperatures (normal versus heat stress). There was confirmation that heat stress conditions resulted in significantly lower marketable yields, specific gravity, dormancy, and significantly higher percentages of tuber defects; however, significant differences existed between potato clones. Under heat stress conditions, Russet Burbank had a high percent of tubers with external defects, whereas Atlantic showed the highest percentage of internal defects (mainly internal heat necrosis). Vanguard Russet produced the highest marketable yield while maintaining a low percentage of external and internal defects. Russet Burbank and Atlantic were heat-sensitive controls for external and internal tuber defects, respectively. In contrast, Vanguard Russet can be used as a reliable heat-tolerant control. Including appropriate controls in heat stress studies will help identify clones with heat tolerance.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3