Abstract
Pierce’s disease (PD) is a serious threat to grape production in Europe. This disease is caused by Xylella fastidiosa and is mediated by insect vectors, suggesting its high potential for spread and necessity for early monitoring. In this study, hence, potential distribution of Pierce’s disease varied with climate change and was spatially evaluated in Europe using ensemble species distribution modeling. Two models of X. fastidiosa and three major insect vectors (Philaenus spumarius, Neophilaenus campestris, and Cicadella viridis) were developed using CLIMEX and MaxEnt. The consensus areas of the disease and insect vectors, along with host distribution, were evaluated using ensemble mapping to identify high-risk areas for the disease. Our predictions showed that the Mediterranean region would be the most vulnerable to Pierce’s disease, and the high-risk area would increase three-fold due to climate change under the influence of N. campestris distribution. This study demonstrated a methodology for species distribution modeling specific to diseases and vectors while providing results that could be used for monitoring Pierce’s disease by simultaneously considering the disease agent, vectors, and host distribution.
Funder
National Research Foundation of Korea
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献