Evaluating the Impact of Climate Change and Human Activities on the Potential Distribution of Pine Wood Nematode (Bursaphelenchus xylophilus) in China

Author:

Zhang Liang1ORCID,Wang Ping12ORCID,Xie Guanglin12,Wang Wenkai12

Affiliation:

1. Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China

2. MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China

Abstract

Bursaphelenchus xylophilus is a pest that interferes with the health of forests and hinders the development of the forestry industry, and its spread is influenced by changes in abiotic factors and human activities. The potential distribution areas of B. xylophilus in China under four shared-economic pathways were predicted using the optimized MaxEnt model (version 3.4.3), combining data from a variety of environmental variables: (1) prediction of natural environmental variables predicted under current climate models; (2) prediction of natural environmental variables + human activities under current climate models; and (3) prediction of natural environmental variables under the future climate models (2050s and 2070s). Meanwhile, whether the niche of B. xylophilus has changed over time is analyzed. The results showed that human activities, precipitation in the driest month, annual precipitation, and elevation had significant effects on the distribution of B. xylophilus. In the current conditions, human activities greatly reduced the survival area of B. xylophilus, and its suitable distribution area was mainly concentrated in the southwestern and central regions of China. Under the influence of climate change in the future, the habitat of B. xylophilus will gradually spread to the northeast. In addition, the ecological niche overlap analysis showed that B. xylophilus in future climate was greater than 0.74. This study provides important information for understanding the ecological adaptation and potential risk of B. xylophilus, which can help guide the decision making of pest control and forest protection.

Funder

National Natural Science Foundation of China

Science and Technology Department of Hubei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3