A Case Study of the Relationship Between Vegetation Coverage and Urban Heat Island in a Coastal City by Applying Digital Twins

Author:

Qi Yansu,Li Han,Pang Zonglin,Gao Weijun,Liu Chao

Abstract

While urban vegetation affects the urban thermal environment directly, the effects of different plant layouts and vegetation cover on urban microclimate regulation are different. This study has applied digital technologies to advance urban environmental research and forestry analysis. With a focus on a coastal city located on the eastern coast of the North Temperate Zone as a study area, this study collected the Landsat archive satellite remote sensing image data covering the study area in 2000–2020 and analyzed the temporal and spatial distribution characteristics of vegetation coverage, land surface temperature, and urban heat island (UHI) ratio index. The study results included the following findings: (1) The area of high fractional vegetation cover (FVC) (0.8–1.0) in the study area is increasing. Those areas are located in the mountain forests in the near-coastal area. The lowest temperature was also detected in the mountain area. (2) The distance from the coastline causes a negative correlation between land surface temperature and FVC. The land surface temperature in the regions with a distance of more than 25 km from the coastline decreases obviously with increasing FVC in summer. However, the correlation between the land surface temperature and FVC showed a slight change in the winter period. (3) UHI ratio index decreases along with the area of high FVC (H-FVC) area. The influence of ocean climate on seasons is different, which results in the reduced effect of the H-FVC area and differences in the UHI ratio index. (4) The distance from the coastline should be considered as an important factor in the forestry development planning of the coastal cities.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3