Urban Morphology Influencing the Urban Heat Island in the High-Density City of Xi’an Based on the Local Climate Zone

Author:

Wang Chongqing1,Zhang He1,Ma Zhongxu1,Yang Huan1,Jia Wenxiao1

Affiliation:

1. College of Landscape Architecture and Art, Northwest Agriculture and Forest University, Xianyang 712100, China

Abstract

Urban form plays a critical role in enhancing urban climate resilience amidst the challenges of escalating global climate change and recurrent high-temperature heatwaves. Therefore, it is crucial to study the correlation between urban spatial form factors and land surface temperature (LST). This study utilized Landsat 8 remote sensing data to estimate LST. Random forest nonlinear analysis was employed to investigate the interaction between the urban heat island (UHI) and six urban morphological factors: building density (BD), floor area ratio (FAR), building height (BH), fractional vegetation coverage (FVC), sky view factor (SVF), and impervious surface fraction (ISF), within the framework of local climate zones (LCZs). Key findings revealed that Xi’an exhibited a significant urban heat island effect, with over 10% of the study area experiencing temperatures exceeding 40 °C. Notably, the average LST of building-class LCZs (1-6) was 3.5 °C higher than that of land cover-class LCZs (A-C). Specifically, compact LCZs (1-3) had an average LST 3.02 °C higher than open LCZs (4-6). FVC contributed the most to the variation in LST, while FAR contributed the least. ISF and BD were found to have a positive impact on LST, while FVC and BH had a negative influence. Moreover, SVF was observed to positively influence LST in the compact classes (LCZ2-3) and open low-rise class (LCZ6). In the open mid-rise class (LCZ5), SVF and LST showed a U-shaped relationship. There is an inverted U-shaped relationship between FAR and LST, with the inflection point occurring at 1.5. The results of nonlinear analysis were beneficial in illustrating the complex relationships between LST and its driving factors. The study’s results highlight the effectiveness of utilizing LCZ as a detailed approach to explore the relationship between urban morphology and urban heat islands. Recommendations for enhancing urban climate resilience include strategies such as increasing vegetation coverage, regulating building heights, organizing buildings in compact LCZs in an “L” or “I” shape, and adopting an “O” or “C” configuration for buildings in open LCZs to aid planners in developing sustainable urban environments.

Funder

Shaanxi National Science Foundation

Northwest A&F University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3