Research on Optimal Cooling Landscape Combination and Configuration Based on Local Climate Zones—Fuzhou, China

Author:

Cai Yuanbin1,Gao Chen1,Pan Wenbin1,Chen Yanhong23,Wu Zijing1

Affiliation:

1. College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China

2. Key Laboratory of Humid Subtropical Eco-Geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China

3. Department of Environmental and Resources Engineering, Fuzhou University Zhicheng College, Fuzhou 350002, China

Abstract

The deterioration of the urban thermal environment has seriously affected the quality of life of urban residents, and studying the optimal cooling landscape combination and configuration based on local climate zones (LCZs) is crucial for mitigating the thermal environment. In this study, the LCZ system was combined to analyze the spatial and temporal changes to the thermal environment in the central area of Fuzhou, and the 159 blocks in the core area were selected to derive the optimal LCZ combination and configuration. The conclusions are as follows: (1) From 2013 to 2021, the building layout of the study area became more open and the building height gradually increased. The high-temperature areas were mainly clustered in the core area; (2) The LSTs for low-rise buildings (LCZ 3 (41.67 °C), LCZ 7 (40.10 °C), LCZ 8 (42.61 °C), and LCZ 10 (41.85 °C)) were higher than the LSTs for high-rise buildings (LCZ 1 (38.58 °C) and LCZ 4 (38.50 °C)); (3) The thermal contribution index for low building types was higher for dense buildings (LCZ 3 (0.4331), LCZ 8 (0.3149), and LCZ 10 (0.2325)) than for open buildings (LCZ 6 (0.0247) and LCZ 9 (0.0317)); (4) Blocks with an average LST of 36 °C had the most cost-effective cooling, and the combination and configuration of LCZs within such blocks were optimal. Our results can be used to better guide urban planners in managing LCZ combinations and configurations within blocks (the smallest planning unit) at an earlier phase of thermal environment design, and for appropriately adapting existing block layouts, providing a new perspective on urban thermal environment research with important implications for climate-friendly city and neighborhood planning.

Funder

Education Scientific Research Project of Fujian Province Education Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3