Combining Multi-Dimensional Convolutional Neural Network (CNN) With Visualization Method for Detection of Aphis gossypii Glover Infection in Cotton Leaves Using Hyperspectral Imaging

Author:

Yan Tianying,Xu Wei,Lin Jiao,Duan Long,Gao Pan,Zhang Chu,Lv Xin

Abstract

Cotton is a significant economic crop. It is vulnerable to aphids (Aphis gossypii Glovers) during the growth period. Rapid and early detection has become an important means to deal with aphids in cotton. In this study, the visible/near-infrared (Vis/NIR) hyperspectral imaging system (376–1044 nm) and machine learning methods were used to identify aphid infection in cotton leaves. Both tall and short cotton plants (Lumianyan 24) were inoculated with aphids, and the corresponding plants without aphids were used as control. The hyperspectral images (HSIs) were acquired five times at an interval of 5 days. The healthy and infected leaves were used to establish the datasets, with each leaf as a sample. The spectra and RGB images of each cotton leaf were extracted from the hyperspectral images for one-dimensional (1D) and two-dimensional (2D) analysis. The hyperspectral images of each leaf were used for three-dimensional (3D) analysis. Convolutional Neural Networks (CNNs) were used for identification and compared with conventional machine learning methods. For the extracted spectra, 1D CNN had a fine classification performance, and the classification accuracy could reach 98%. For RGB images, 2D CNN had a better classification performance. For HSIs, 3D CNN performed moderately and performed better than 2D CNN. On the whole, CNN performed relatively better than conventional machine learning methods. In the process of 1D, 2D, and 3D CNN visualization, the important wavelength ranges were analyzed in 1D and 3D CNN visualization, and the importance of wavelength ranges and spatial regions were analyzed in 2D and 3D CNN visualization. The overall results in this study illustrated the feasibility of using hyperspectral imaging combined with multi-dimensional CNN to detect aphid infection in cotton leaves, providing a new alternative for pest infection detection in plants.

Funder

National Natural Science Foundation of China

Xinjiang Production and Construction Corps

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3