The CNN model aided the study of the clinical value hidden in the implant images

Author:

Huang Xinxu1,Chen Xingyu1,Zhong Xinnan1,Tian Taoran1ORCID

Affiliation:

1. State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China

Abstract

AbstractPurposeThis article aims to construct a new method to evaluate radiographic image identification results based on artificial intelligence, which can complement the limited vision of researchers when studying the effect of various factors on clinical implantation outcomes.MethodsWe constructed a convolutional neural network (CNN) model using the clinical implant radiographic images. Moreover, we used gradient‐weighted class activation mapping (Grad‐CAM) to obtain thermal maps to present identification differences before performing statistical analyses. Subsequently, to verify whether these differences presented by the Grad‐CAM algorithm would be of value to clinical practices, we measured the bone thickness around the identified sites. Finally, we analyzed the influence of the implant type on the implantation according to the measurement results.ResultsThe thermal maps showed that the sites with significant differences between Straumann BL and Bicon implants as identified by the CNN model were mainly the thread and neck area. (2) The heights of the mesial, distal, buccal, and lingual bone of the Bicon implant post‐op were greater than those of Straumann BL (P < 0.05). (3) Between the first and second stages of surgery, the amount of bone thickness variation at the buccal and lingual sides of the Bicon implant platform was greater than that of the Straumann BL implant (P < 0.05).ConclusionAccording to the results of this study, we found that the identified‐neck‐area of the Bicon implant was placed deeper than the Straumann BL implant, and there was more bone resorption on the buccal and lingual sides at the Bicon implant platform between the first and second stages of surgery. In summary, this study proves that using the CNN classification model can identify differences that complement our limited vision.

Funder

National Natural Science Foundation of China

Science and Technology Department of Sichuan Province

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3