Detecting the Minimum Limit on Wheat Stripe Rust in the Latent Period Using Proximal Remote Sensing Coupled with Duplex Real-Time PCR and Machine Learning

Author:

Liu Qi12,Sun Tingting12,Wen Xiaojie12,Zeng Minghao12,Chen Jing12

Affiliation:

1. Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China

2. Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China

Abstract

Wheat stripe rust (WSR) is an airborne disease that causes severe damage to wheat. The rapid and early detection of WSR is essential for the prevention and control of this disease. The minimum detection limit (MDL) is one of the most important characteristics of quantitative methods that can be used to determine the scope and applicability of a measurement technique. Three wheat cultivars were inoculated with Puccinia striiformis f.sp. tritici (Pst), and a spectrometer was used to collect the canopy hyperspectral data, and the Pst content was obtained via a duplex real-time polymerase chain reaction (PCR) during the latent period, respectively. The disease index (DI) and molecular disease index (MDI) were calculated. The regression tree algorithm was used to determine the MDL of the Pst based on hyperspectral feature parameters. The logistic, IBK, and random committee algorithms were used to construct the classification model based on the MDL. The results showed that when the MDL was 0.7, IBK had the best recognition accuracy. The optimal model, which used the spectral feature R_2nd.dv ((the second derivative of the original hyperspectral value)) and the modeling ratio 2:1, had an accuracy of 91.67% on the testing set and 90.67% on the 10-fold cross-validation. Thus, during the latent period, the MDL of Pst was determined using hyperspectral technology as 0.7.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3