AfCHIL, a Type IV Chalcone Isomerase, Enhances the Biosynthesis of Naringenin in Metabolic Engineering

Author:

Xu Huanhuan,Lan Yanping,Xing Jiayi,Li Yi,Liu Lecheng,Wang Yongqin

Abstract

Naringenin is an essential precursor for all flavonoids, and effectively promoting naringenin production is crucial in metabolic engineering. The interaction between plant metabolic enzymes ensures metabolic flux. The effect can effectively improve the natural product synthesis of engineering microbial systems. In this study, chalcone isomerase genes in Allium fistulosum have been identified. The expression of AfCHIL is closely related to the accumulation of anthocyanins, and the expression of AfCHIL and AfCHS was highly synchronized. Yeast two-hybrid and firefly luciferase complementation imaging assay further confirmed AfCHIL physically interacted with AfCHS/AfCHI. The bioconversion experiment confirmed that AfCHIL reduced the derailment produced by AfCHS and increased the yield of naringenin. In addition, a system of biosynthesis naringenin involved in AfCHS was constructed, and these results suggested that the potential function between CHS with CHIL advanced naringenin production effectively. In conclusion, this study illustrated the function of AfCHIs in Allium fistulosum and provided new insight into improving the synthesis efficiency of naringenin.

Funder

National Natural Science Foundation of China

Beijing Academy of Agricultural and Forestry Sciences

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3