Metabolic engineering ofAcinetobacter baylyiADP1 for naringenin production

Author:

Kurnia KesiORCID,Efimova Elena,Santala VilleORCID,Santala SuviORCID

Abstract

AbstractNaringenin, a flavanone and a precursor for a variety of flavonoids, has potential applications in the health and pharmaceutical sectors. The biological production of naringenin using genetically engineered microbes is considered as a promising strategy. The naringenin synthesis pathway involving chalcone synthase (CHS) and chalcone isomerase (CHI) relies on the efficient supply of key substrates, malonyl-CoA and coumaroyl-CoA. In this research, we utilized a soil bacterium,Acinetobacter baylyiADP1, which exhibits several characteristics that make it a suitable candidate for naringenin biosynthesis; the strain naturally tolerates and can uptake and metabolize coumarate, a primary compound in alkaline-pretreated lignin and a precursor for naringenin production.A. baylyiADP1 also produces intracellular lipids, such as wax esters, thereby being able to provide an excess of malonyl-CoA for naringenin biosynthesis. Moreover, the genomic engineering of this strain is notably straightforward. In the course of the construction of a naringenin-producing strain, the coumarate catabolism was eliminated by a single gene knockout (ΔhcaA) and various combinations of plant-derived CHS and CHI were evaluated. The best performance was obtained by a novel combination of genes encoding for a CHS fromHypericum androsaemumand a CHI fromMedicago sativa,that enabled the production of 18 mg/L naringenin in batch cultivations from coumarate. Furthermore, the implementation of a fed-batch system led to a significant 3.7-fold increase (66 mg/L) in naringenin production. These findings underscore the potential ofA. baylyiADP1 as a host for naringenin biosynthesis as well as advancement of lignin-based bioproduction.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3