Author:
Favaro Anna,Moro-Velázquez Laureano,Butala Ankur,Motley Chelsie,Cao Tianyu,Stevens Robert David,Villalba Jesús,Dehak Najim
Abstract
Motor impairments are only one aspect of Parkinson's disease (PD), which also include cognitive and linguistic impairments. Speech-derived interpretable biomarkers may help clinicians diagnose PD at earlier stages and monitor the disorder's evolution over time. This study focuses on the multilingual evaluation of a composite array of biomarkers that facilitate PD evaluation from speech. Hypokinetic dysarthria, a motor speech disorder associated with PD, has been extensively analyzed in previously published studies on automatic PD evaluation, with a relative lack of inquiry into language and task variability. In this study, we explore certain acoustic, linguistic, and cognitive information encoded within the speech of several cohorts with PD. A total of 24 biomarkers were analyzed from American English, Italian, Castilian Spanish, Colombian Spanish, German, and Czech by conducting a statistical analysis to evaluate which biomarkers best differentiate people with PD from healthy participants. The study leverages conceptual robustness as a criterion in which a biomarker behaves the same, independent of the language. Hence, we propose a set of speech-based biomarkers that can effectively help evaluate PD while being language-independent. In short, the best acoustic and cognitive biomarkers permitting discrimination between experimental groups across languages were fundamental frequency standard deviation, pause time, pause percentage, silence duration, and speech rhythm standard deviation. Linguistic biomarkers representing the length of the narratives and the number of nouns and auxiliaries also provided discrimination between groups. Altogether, in addition to being significant, these biomarkers satisfied the robustness requirements.
Subject
Neurology (clinical),Neurology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献