A novel speech analysis algorithm to detect cognitive impairment in a Spanish population

Author:

Kaser Alyssa N.,Lacritz Laura H.,Winiarski Holly R.,Gabirondo Peru,Schaffert Jeff,Coca Alberto J.,Jiménez-Raboso Javier,Rojo Tomas,Zaldua Carla,Honorato Iker,Gallego Dario,Nieves Emmanuel Rosario,Rosenstein Leslie D.,Cullum C. Munro

Abstract

ObjectiveEarly detection of cognitive impairment in the elderly is crucial for diagnosis and appropriate care. Brief, cost-effective cognitive screening instruments are needed to help identify individuals who require further evaluation. This study presents preliminary data on a new screening technology using automated voice recording analysis software in a Spanish population.MethodData were collected from 174 Spanish-speaking individuals clinically diagnosed as cognitively normal (CN, n = 87) or impaired (mild cognitive impairment [MCI], n = 63; all-cause dementia, n = 24). Participants were recorded performing four common language tasks (Animal fluency, alternating fluency [sports and fruits], phonemic “F” fluency, and Cookie Theft Description). Recordings were processed via text-transcription and digital-signal processing techniques to capture neuropsychological variables and audio characteristics. A training sample of 122 subjects with similar demographics across groups was used to develop an algorithm to detect cognitive impairment. Speech and task features were used to develop five independent machine learning (ML) models to compute scores between 0 and 1, and a final algorithm was constructed using repeated cross-validation. A socio-demographically balanced subset of 52 participants was used to test the algorithm. Analysis of covariance (ANCOVA), covarying for demographic characteristics, was used to predict logistically-transformed algorithm scores.ResultsMean logit algorithm scores were significantly different across groups in the testing sample (p < 0.01). Comparisons of CN with impaired (MCI + dementia) and MCI groups using the final algorithm resulted in an AUC of 0.93/0.90, with overall accuracy of 88.4%/87.5%, sensitivity of 87.5/83.3, and specificity of 89.2/89.2, respectively.ConclusionFindings provide initial support for the utility of this automated speech analysis algorithm as a screening tool for cognitive impairment in Spanish speakers. Additional study is needed to validate this technology in larger and more diverse clinical populations.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3