Impact of Asymmetric Weight Update on Neural Network Training With Tiki-Taka Algorithm

Author:

Lee Chaeun,Noh Kyungmi,Ji Wonjae,Gokmen Tayfun,Kim Seyoung

Abstract

Recent progress in novel non-volatile memory-based synaptic device technologies and their feasibility for matrix-vector multiplication (MVM) has ignited active research on implementing analog neural network training accelerators with resistive crosspoint arrays. While significant performance boost as well as area- and power-efficiency is theoretically predicted, the realization of such analog accelerators is largely limited by non-ideal switching characteristics of crosspoint elements. One of the most performance-limiting non-idealities is the conductance update asymmetry which is known to distort the actual weight change values away from the calculation by error back-propagation and, therefore, significantly deteriorates the neural network training performance. To address this issue by an algorithmic remedy, Tiki-Taka algorithm was proposed and shown to be effective for neural network training with asymmetric devices. However, a systematic analysis to reveal the required asymmetry specification to guarantee the neural network performance has been unexplored. Here, we quantitatively analyze the impact of update asymmetry on the neural network training performance when trained with Tiki-Taka algorithm by exploring the space of asymmetry and hyper-parameters and measuring the classification accuracy. We discover that the update asymmetry level of the auxiliary array affects the way the optimizer takes the importance of previous gradients, whereas that of main array affects the frequency of accepting those gradients. We propose a novel calibration method to find the optimal operating point in terms of device and network parameters. By searching over the hyper-parameter space of Tiki-Taka algorithm using interpolation and Gaussian filtering, we find the optimal hyper-parameters efficiently and reveal the optimal range of asymmetry, namely the asymmetry specification. Finally, we show that the analysis and calibration method be applicable to spiking neural networks.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3