Energy-Efficient Mobility Prediction Routing Protocol for Freely Floating Underwater Acoustic Sensor Networks

Author:

Alqahtani Ghida Jubran,Bouabdallah Fatma

Abstract

Recently, there has been an increasing interest in monitoring and exploring underwater environments for scientific applications such as oceanographic data collection, marine surveillance, and pollution detection. Underwater acoustic sensor networks (UASNs) have been proposed as the enabling technology to observe, map, and explore the ocean. The unique characteristics of underwater aquatic environments such as low bandwidth, long propagation delays, and high energy consumption make the data forwarding process very difficult. Moreover, the mobility of the underwater sensors is considered an additional constraint for the success of the data forwarding process. That being said, most of the data forwarding protocols do not realistically consider the dynamic topology of underwater environment as sensor nodes move with the water currents, which is a natural phenomenon. In this research, we propose a mobility prediction optimal data forwarding (MPODF) protocol for UASNs based on mobility prediction. Indeed, by considering a realistic, physically inspired mobility model, our protocol succeeds to forward every generated data packet through one single best path without the need to exchange notification messages, thanks to the mobility prediction module. Simulation results show that our protocol achieves a high packet delivery ratio, high energy efficiency, and reduced end-to-end delay.

Publisher

Frontiers Media SA

Reference32 articles.

1. Routing Protocols Based on Node Mobility for Underwater Wireless Sensor Network (UWSN): A Survey;Ahmed;J. Netw. Comput. Appl.,2017

2. Hop-by-hop Reliable Data Deliveries for Underwater Wireless Sensor Networks;Ayaz,2010

3. Hop-by-hop Dynamic Addressing Based (H2-DAB) Routing Protocol for Underwater Wireless Sensor Networks;Ayaz,2009

4. F-LQE: A Fuzzy Link Quality Estimator for Wireless Sensor Networks;Baccour,2010

5. Time Evolution of Underwater Sensor Networks Coverage and Connectivity Using Physically Based Mobility Model;Bouabdallah;Wireless Commun. Mobile Comput.,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3