Routing protocols based on node selection for freely floating underwater wireless sensor networks: a survey

Author:

Alqahtani Ghida Jubran,Bouabdallah FatmaORCID

Abstract

AbstractRecently, there has been an increasing interest in monitoring and exploring the underwater environment for scientific applications such as oceanographic data collection, marine surveillance, and pollution detection. Underwater acoustic sensor networks (UASN) have been proposed as the enabling technology to observe, map and explore the ocean. Due to the unique characteristics of underwater aquatic environment, which are low bandwidth, long propagation delays, and high energy consumption, the data forwarding process is very difficult. This paper presents a survey of the routing protocols for UASN. The addressed routing protocols are classified from a mobility point of view in freely floating underwater sensor networks. Indeed, managing the mobility of freely floating underwater sensors is one of the most critical constraints in the design of routing protocols. That is why we classify the routing protocols into “reliable data forwarding protocols” and “prediction-based data forwarding protocols.” In the first category, the proposed protocols mainly endure nodes’ mobility by continuously updating location information aiming at delivering the packets to the sink. In the second category, routing protocols try to rather master the nodes’ mobility by predicting the future nodes’ positions either based on a mobility model or on historical nodes’ positions using filtering techniques. We believe that our classification will help not only in deeply understanding the main characteristics of each protocol but also in investigating the evolution of research work evolution to provide energy-efficient data forwarding solutions for freely floating UASN.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3