Optimal path selection and secured data transmission in underwater acoustic sensor networks: LSTM-based energy prediction

Author:

Kaveripakam Sathish,Chinthaginjala RavikumarORCID

Abstract

The Underwater Acoustic Sensor Network (UASN) is a large network in which the vicinity of a transmitting node is made up of numerous operational sensor nodes. The communication process may be substantially disrupted due to the underwater acoustic channel’s time-varying and space-varying features. As a result, the underwater acoustic communication system faces the problems of reducing interference and enhancing communication effectiveness and quality through adaptive modulation. To overcome this issue, this paper intends to propose a model for optimal path selection and secured data transmission in UASN via Long Short-Term Memory (LSTM) based energy prediction. The proposed model of transmitting the secured data in UASN through the optimal path involves two major phases. Initially, the nodes are selected under the consideration of constraints like energy, distance and link quality in terms of throughput. Moreover, the energy is predicted with the aid of LSTM and the optimal path is selected with the proposed hybrid optimization algorithm termed as Pelican Updated Chimp Optimization Algorithm (PUCOA), which is the combination of two algorithms including the Pelican Optimization Algorithm (POA) and Chimp Optimization Algorithm (COA). Further, the data is transmitted via the optimal path securely by encrypting the data with the proposed improved blowfish algorithm (IBFA). At last, the developed LSTM+PUCOA model is validated with standard benchmark models and it proves that the performance of the proposed LSTM+PUCOA model attains 90.85% of accuracy, 92.78% of precision, 91.78% of specificity, 89.79% of sensitivity, 7.21% of FPR, 89.76% of F1 score, 89.77% of MCC, 10.20% of FNR, 92.45% of NPV, and 10.22% of FDR for Learning percentage 70.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3