Implementation of a Finite Element Deformation Model Within an Elasto-Hydrodynamic Lubrication Numerical Solver for a Ball in Socket Tribopair

Author:

Ruggiero Alessandro,Sicilia Alessandro

Abstract

In the framework of the elasto-hydrodynamic lubrication simulation algorithms of lubricated tribopairs, a key role is played by the chosen deformation model, since it affects the surfaces’ separation, which guarantees the existence of a thin lubricant film thickness, even when the tribo-system is subjected to high loads. The aim of this article is to merge a finite element deformation model based on linear tetrahedra, previously developed by the same authors, within the Reynolds equation solver in the elasto-hydrodynamic mode, with reference to a generic ball in socket lubricated tribo-system. The main novelty of this research is the implementation of the finite element deformation model, allowing the authors to relate the deformation vector to the pressure one through an influence matrix which takes into account the spherical motion of the ball with respect to the socket. The computer code for the problem–solution was developed in a MATLAB environment and simulated a planar motion condition in terms of eccentricity and angular velocity vectors, in order to calculate the meatus fluid pressure field, surfaces’ separation, shear stress, deformation, and wear depth. The integration over time of the output fields led to the time evolution of the load vector, friction torque vector, and wear volume. Moreover, the lubrication algorithm takes into account the fluid non-Newtonian behavior and the surfaces’ progressive geometrical modification over time due to cumulated wear. The obtained results reproduced the classical elasto-hydrodynamic shapes of the involved quantities, following the meatus minimum thickness predicted by the Hamrock–Dowson model; furthermore, it provided information about the mechanical behavior of the whole bodies belonging to the spherical joint thanks to the finite element deformation model.

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3