Prediction of ball-on-plate friction and wear by ANN with data-driven optimization

Author:

Kovalev Alexander,Tian Yu,Meng Yonggang

Abstract

AbstractFor training artificial neural network (ANN), big data either generated by machine or measured from experiments are used as input to “learn” the unspecified functions defining the ANN. The experimental data are fed directly into the optimizer allowing training to be performed according to a predefined loss function. To predict sliding friction and wear at mixed lubrication conditions, in this study a specific ANN structure was so designed that deep learning algorithms and data-driven optimization models can be used. Experimental ball-on-plate friction and wear data were analyzed using the specific training procedure to optimize the weights and biases incorporated into the neural layers of the ANN, and only two independent experimental data sets were used during the ANN optimization procedure. After the training procedure, the ANN is capable to predict the contact and hydrodynamic pressure by adapting the output data according to the tribological condition implemented in the optimization algorithm.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3