Author:
Catania Federica,Oliveira Hugo De Souza,Costa Angeli Martina A.,Ciocca Manuela,Pané Salvador,Münzenrieder Niko,Cantarella Giuseppe
Abstract
Thin-film transistors (TFTs) based on amorphous indium-gallium-zinc-oxide (a-IGZO) have proved promising features for flexible and lightweight electronics. To achieve technological maturity for commercial and industrial applications, their stability under extreme environmental conditions is highly required. The combined effects of temperature (T) from −30.0°C to 50.0°C and relative humidity (RH) stress from 0 to 95% on a-IGZO TFT is presented. The TFT performances and the parameters variation were analysed in two different experiments. First, the TFT response was extracted while undergoing the most extreme climate conditions on Earth, ranging from the African Desert (50.0°C, 22%) to Antarctic (−30.0°C, 0%). Afterwards, the device functionality was demonstrated in three parts of the human body (forehand, arm and foot) at low (35%), medium (60%) and high (95%) relative humidity for on-skin and wearable applications. The sensitivity to T/RH variations suggests the suitability of these TFTs as sensing element for epidermal electronics and artificial skin.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献