Classification of waste materials with a smart garbage system for sustainable development: a novel model

Author:

Kaya Volkan

Abstract

In today’s conditions, where the human population is increasing, environmental pollution is also increasing around the world. One of the most important causes of environmental pollution is the waste materials in the garbage. Misuse of waste materials causes significant damage to both the environment and human health. With the developing technology, the recyclability of the raw material used in the production of waste materials significantly affects both the raw material needs of the countries and the energy savings. Therefore, many traditional activities are carried out in recycling facilities in order to reuse the waste materials that can be recycled in many countries. At the beginning of these activities is manual waste collection and pre-processing depending on the human workforce. This process poses a serious threat to both the environment and human health. For this reason, there is a need for a smart system that automatically detects and classifies the waste materials in the garbage. In this study, Xception, InceptionResNetV2, MobileNet, DenseNet121 and EfficientNetV2S deep learning methods based on artificial intelligence, which automatically classify the waste materials in the garbage, were used and in addition to these methods, Xception_CutLayer and InceptionResNetV2_CutLayer based on transfer learning techniques were proposed. The proposed methods and artificial intelligence-based deep learning methods were trained and tested with a dataset containing 6 different waste materials. According to the findings obtained as a result of training and testing, a classification success rate of 89.72% with the proposed Xception_CutLayer method and 85.77% with the InceptionResNetV2_CutLayer method, a better success rate was obtained than the other artificial intelligence-based methods discussed in the study.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference42 articles.

1. A novel deep learning method for detecting defects in mobile phone screen surface based on machine vision;Akgül;Sakarya Univ. J. Sci.,2023

2. Towards lightweight neural networks for garbage object detection;Cai;Sensors,2022

3. Application of convolutional neural network based on transfer learning for garbage classification;Cao,2020

4. Garbage detection and path-planning in autonomous robots;Chandra,2021

5. Garbage classification detection based on improved YOLOV4;Chen;J. Comput. Commun.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. When Transformation Deters Recycling: The Role of Privacy Concerns;Journal of Sustainable Marketing;2024-08-23

2. The Smart City Waste Classification Management System;Journal of Organizational and End User Computing;2024-08-12

3. Suddh Salil - An Automative Waste Management Technology Using Machine Learning;2024 International Conference on Computer, Electrical & Communication Engineering (ICCECE);2024-02-02

4. Classification of waste in natural environments;MATEC Web of Conferences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3