The Smart City Waste Classification Management System
Author:
Affiliation:
1. School of Art and Design, YiLi Normal University, China
2. School of Urban Design, Wuhan University, China
Abstract
In response to the growing demands of urbanization, our research presents a pioneering Smart City Waste Classification Management System utilizing advanced computer vision techniques for efficient and accurate waste sorting. This system integrates the innovative CT-Net algorithm, which synergizes the strengths of Convolutional Neural Networks (CNNs) and Transformer architectures to tackle the complex challenges posed by varied and unpredictable urban waste characteristics. Extensive evaluations on multiple datasets, including the proprietary Huawei Cloud waste dataset, demonstrate that our model significantly outperforms existing methodologies in terms of precision, robustness, and processing speed. By deploying this technology within urban waste management frameworks, cities can achieve remarkable improvements in sustainability and operational efficiency.
Publisher
IGI Global
Reference34 articles.
1. Garbage collecting the Internet
2. Arun, C., & Sivashanmugam, P. (2015). Identification and optimization of parameters for the semi-continuous production of garbage enzyme from pre-consumer organic waste by green RP-HPLC method. Waste Management, 44, 28–33. https://pubmed.ncbi.nlm.nih.gov/26205805/
3. Cao, L., & Xiang, W. (2020, June 12–14). Application of convolutional neural network based on transfer learning for garbage classification [Conference session]. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China. https://ieeexplore.ieee.org/abstract/document/9141699
4. Garbage classification system based on improved ShuffleNet v2
5. Fathurrahman, H. I. K., Ma’arif, A., & Chin, L. Y. (2021). The development of real-time mobile garbage detection using deep learning. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 7(3), 472–478. https://www.researchgate.net/publication/358275276_The_Development_of_Real-Time_Mobile_Garbage_Detection_Using_Deep_Learning
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3