Variability and controls of stable carbon isotopic fractionation during aerobic methane oxidation in temperate lakes

Author:

Thottathil Shoji D.,Reis Paula C. J.,Prairie Yves T.

Abstract

The aerobic oxidation of methane (CH4) by methanotrophic bacteria (MOB) is the major sink of this highly potent greenhouse gas in freshwater environments. Yet, CH4 oxidation is one of the largest uncertain components in predicting the current and future CH4 emissions from these systems. While stable carbon isotopic mass balance is a powerful approach to estimate the extent of CH4 oxidation in situ, its applicability is constrained by the need of a reliable isotopic fractionation factor (αox), which depicts the slower reaction of the heavier stable isotope (13C) during CH4 oxidation. Here we explored the natural variability and the controls of αox across the water column of six temperate lakes using experimental incubation of unamended water samples at different temperatures. We found a large variability of αox (1.004–1.038) with a systematic increase from the surface to the deep layers of lake water columns. Moreover, αox was strongly positively coupled to the abundance of MOB in the γ-proteobacteria class (γ-MOB), which in turn correlated to the concentrations of oxygen and CH4, and to the rates of CH4 oxidation. To enable the applicability in future isotopic mass balance studies, we further developed a general model to predict αox using routinely measured limnological variables. By applying this model to δ13C-CH4 profiles obtained from the study lakes, we show that using a constant αox value in isotopic mass balances can largely misrepresent and undermine patterns of the extent of CH4 oxidation in lakes. Our αox model thus contributes towards more reliable estimations of stable carbon isotope-based quantification of CH4 oxidation and may help to elucidate large scale patterns and drivers of the oxidation-driven mitigation of CH4 emission from lakes.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3