In situ aerobic methane oxidation rates in a stratified lake

Author:

Hudspeth Zachary W.1ORCID,Morningstar Joshua L.1ORCID,Mendlovitz Howard P.1,Baily Jennifer A.2ORCID,Lloyd Karen G.2ORCID,Martens Christopher S.1

Affiliation:

1. University of North Carolina at Chapel Hill Chapel Hill North Carolina USA

2. University of Tennessee Knoxville Tennessee USA

Abstract

AbstractMicrobial aerobic methane oxidation is an important sink for aquatic methane worldwide. Despite its importance to global methane fluxes, few aerobic methane oxidation rates have been obtained in freshwater or marine environments without imposing changes to the microbial community through use of ex situ methods. A novel in situ incubation method for continuous time‐series measurements was used in Jordan Lake, North Carolina, during 2020–2021, to determine reaction kinetics for aerobic methane oxidation rates across a wide range of naturally varying methane (55–1833 nM) and dissolved oxygen (DO; 28–366 μM) concentrations and temperatures (17–30°C). Methane oxidation began immediately at the start of each of 21 incubations and methane oxidation rates were 1st order with respect to methane. The data density allowed for accurate calculation of 1st‐order rate constants, k, that ranged from 0.018 to 0.462 h−1 (R2 > 0.967). Addition of ammonium (20–45 μM) to natural concentrations ranging from 0.057 to 2.4 μM did not change aerobic methane oxidation rate kinetics, suggesting that the natural population of aerobic methane oxidizers in this eutrophic lake was not nitrogen limited. Values of k inversely correlated most strongly with initial DO concentrations (R2 = 0.82) rather than temperature. Values for k increased with Julian day throughout our sampling period, suggesting seasonal influences on methane oxidation via responses to geochemical changes or shifts in microbial community abundance and composition. These experiments demonstrate a high variability in the enzymatic capacity for 1st‐order methane oxidation rates in this eutrophic lake that is tightly and inversely coupled to oxygen concentrations. Measurements of in situ aerobic methane oxidation rate constants allow for the direct quantification and modeling of the microbial community's capacity for methane oxidation over a wide range of natural methane concentrations.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3