Fine crop classification in high resolution remote sensing based on deep learning

Author:

Lu Tingyu,Wan Luhe,Wang Lei

Abstract

Mapping the crop type can provide a basis for extracting information on crop planting structure, and area and yield estimation. Obtaining large-scale crop-type mapping by field investigation is inefficient and expensive. Traditional classification methods have low classification accuracy due to the fragmentation and heterogeneity of crop planting. However, the deep learning algorithm has a strong feature extraction ability and can effectively identify and classify crop types. This study uses GF-1 high-resolution remote sensing images as the data source for the Shuangcheng district, Harbin city, Heilongjiang Province, China. Two spectral feature data sets are constructed through field sampling and employed for training and verification, combined with basic survey data of grain production functional areas at the plot scale. Traditional machine learning algorithms, such as random forest (RF) and support vector machine (SVM), and a popular deep learning algorithm, convolution neural network have been utilized. The results show that the fusion of multi-spectral information and vegetation index features helps improve classification accuracy. The deep learning algorithm is superior to the machine learning algorithm in both classification accuracy and classification effect. The highest classification accuracy of Crop Segmentation Network (CSNet) based on fine-tuning Resnet-50 is 91.2%, kappa coefficient is 0.882, and mean intersection over union is 0.834. The classification accuracy is 13.3% and 9.5% points higher than RF and SVM, respectively, and the best classification performance is obtained. The classification accuracy and execution efficiency of the model are suitable for a wide range of crop classification tasks and exhibit good transferability.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference77 articles.

1. Adaptive dropout for training deep neural networks;Ba,2013

2. CNN-based burned area mapping using radar and optical data;Belenguer-Plomer;Remote Sens. Environ.,2021

3. Random search for hyper-parameter optimization;Bergstra;J. Mach. Learn. Res.,2012

4. Decision-tree, rule-based, and random forest classification of high-resolution multispectral imagery for wetland mapping and inventory;Berhane;Remote Sens.,2018

5. Random forests;Breiman;Mach. Learn.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3