Crop Type Classification using Sentinel 2A-Derived Normalized Difference Red Edge Index (NDRE) and Machine Learning Approach

Author:

Bantchına Bere Benjamin1ORCID,Gündoğdu Kemal Sulhi1ORCID

Affiliation:

1. Bursa Uludağ Üniversitesi

Abstract

Satellite remote sensing (RS) enables the extraction of vital information on land cover and crop type. Land cover and crop type classification using RS data and machine learning (ML) techniques have recently gained considerable attention in the scientific community. This study aimed to enhance remote sensing research using high-resolution satellite imagery and a ML approach. To achieve this objective, ML algorithms were employed to demonstrate whether it was possible to accurately classify various crop types within agricultural areas using the Sentinel 2A-derived Normalized Difference Red Edge Index (NDRE). Five ML classifiers, namely Support Vector Machines (SVM), Random Forest (RF), Decision Tree (DT), K-Nearest Neighbors (KNN), and Multi-Layer Perceptron (MLP), were implemented using Python programming on Google Colaboratory. The target land cover classes included cereals, fallow, forage, fruits, grassland-pasture, legumes, maize, sugar beet, onion-garlic, sunflower, and watermelon-melon. The classification models exhibited strong performance, evidenced by their robust overall accuracy (OA). The RF model outperformed, with an OA rate of 95% and a Kappa score of 92%. It was followed by DT (88%), KNN (87%), SVM (85%), and MLP (82%). These findings showed the possibility of achieving high classification accuracy using NDRE from a few Sentinel 2A images. This study demonstrated the potential enhancement of the application of high-resolution satellite RS data and ML for crop type classification in regions that have received less attention in previous studies.

Publisher

Bursa Uludag University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3