Nature Based Solutions for Urban Resilience: A Distinction Between No-Tech, Low-Tech and High-Tech Solutions

Author:

Snep Robbert PH,Voeten Joris GWF,Mol Gerben,Van Hattum Tim

Abstract

Urbanization and extreme weather require smarter urban water management. Nature-based solutions (NBS) like vegetated roofs and city trees can contribute effectively to climate resilience and future proof urban water management. However, large scale implementation is limited due to a lack of knowledge among professionals on how to capture, store, and reuse water on-site. In this paper we advocate a classification into no-tech, low-tech, and high-tech green, thereby supporting urban designers to better utilize the ability of these green elements to effectively manage water flows in different urban settings. Here, “no tech” green is considered traditional urban green, handling (rain) water like nature would. “Low-tech” green (e.g., extensive Sedum roofs) are suitable for dense urban settings with limited demand for water management and ecosystem services. More developed “high-tech” green solutions have vegetation performing even beyond natural capacities, offering full water management control options and enable city planners, architects and landscape designers to enhance urban resilience and circularity without claiming valuable urban space. We elaborate our “tech NBS” approach for city trees and vegetated roofs thereby demonstrating the classification's added value for sustainable urban design. We conclude that specifying the demanded “no/low/high” -tech level of green infrastructure in urban design plans will help to yield the most of ecosystem services using appropriate levels of available technology.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference37 articles.

1. Constructed wetlands for greywater recycle and reuse: a review;Arden;Sci. Total Environ.,2018

2. Six research priorities for cities and climate change;Bai;Nature,2018

3. BosmanM. De Menselijke Maat op het Orlyplein - projectbeschrijving. Orlyplein. Amsterdam2015

4. Urban water management in cities: historical, current and future regimes;Brown;Water Sci. Tech.,2009

5. A comprehensive study on green roof performance for retrofitting existing buildings;Cascone;Build. Environ,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3