Biochar and Compost-Based Integrated Nutrient Management: Potential for Carbon and Microbial Enrichment in Degraded Acidic and Charland Soils

Author:

Rahman M. M.,Islam Md. Rafiqul,Uddin Shihab,Rahman Mohammad Mahmudur,Gaber Ahmed,Abdelhadi Abdelhadi A.,Jahangir M. M. R.

Abstract

Soil acidification and charland formation through alluvial sand deposition are emerging threats to food security in Bangladesh in that they endanger crop production in about 35% of its territory. The integrated plant nutrient system (IPNS) is a globally accepted nutrient management approach designed to revive the damaged soils’ fertility level. Total organic carbon (TOC) in soil is a composite index of soil quality that has consequences for agricultural productivity and natural soil ecosystems. This study assesses the impacts of using biochar, compost, poultry litter, and vermicompost-based IPNS approaches on labile and TOC pools, TOC stocks, lability and management indices, and microbial populations under different cropping patterns after 2 years in acidic and charland soils. The application of IPNS treatments increased microbial biomass carbon (MBC) by 9.1–50.0% in acidic soil and 8.8–41.2% in charland soil compared to the untreated soil, with the largest increase in poultry manure biochar (PMB). Microbial biomass nitrogen (MBN) rose from 20 to 180% in charland soil compared to the control, although no effect was observed in acidic soil. Basal respiration (BR) rose by 43–429% in acidic soil and 16–189% in charland soil compared to the control, exhibiting the highest value in PMB. IPNS treatments significantly improved SOC and POC but did not affect POXc and bulk density in both soils. The PMB and organic fertilizer (OF, compost)-based IPNS wielded the greatest influence on the lability index of MBC in acidic soils and the management index of MBC in both soils. This is despite the fact that IPNS did not affect the lability and management indices of active carbon (AC). IPNS treatments increased the stocks of SOC and MBC in both the soils and POC stock in acidic soil. IPNS treatments significantly boosted the bacterial and fungal populations in both soils, despite having no effect on phosphorus-solubilizing bacteria (PSB). Thus, PMB and OF (compost)-based IPNS may be a better nutrient management practice in degraded acidic and charland soils. This is especially the case in terms of soil quality improvement, soil carbon sequestration, and microbial enrichment.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3