Phosducin-like protein PoPlp1 impacts cellulase and amylase expression and development in Penicillium oxalicum via the G protein–cAMP signaling pathway

Author:

Jia Zhilei,Yan Mengdi,Li Xiaobei,Sun Qiuyan,Xu Gen,Li Shuai,Chen Wenchao,Shi Zhimin,Li Zhonghai,Chen Mei,Bao Xiaoming

Abstract

In this study, a phosducin-like protein, PoPlp1, was identified and functionally studied in the cellulase-producing strain Penicillium oxalicum 114-2. PoPlp1 was proven to participate in several biological processes, including mycelium development, conidiation, and expression of cellulases and amylases. With deletion of Poplp1, morphology and development varied significantly in ΔPoplp1. Colony growth, glucose utilization, and the hydrolysis capability of starch and cellulose were limited, whereas conidiation was enhanced. Based on detection of the levels of expression of transcription factors involved in asexual development, we conjectured that PoPlp1 is involved in conidiation via the major factor BrlA. We explored the effect of PoPlp1 on cellulase and amylase expression and observed that cellulase and amylase activity and major gene transcription levels were all dramatically reduced in ΔPoplp1. Deletion of PoPlp1 caused a decrease in intracellular cAMP levels, and the cellulase gene expression level of ΔPoplp1 was restored to a certain extent through external addition of cAMP. These findings demonstrate that PoPlp1 may affect cellulase and amylase expression by regulating cAMP concentration. To comprehensively explore the mechanism of PoPlp1 in regulating multiple biological processes, we performed a comparative transcriptomic analysis between strains P. oxalicum 114-2 and ΔPoplp1. The major cellulase and amylase genes were all downregulated, congrent with the results of real-time quantitative polymerase chain reaction analysis. The genes involved in the G protein–cAMP signaling pathway, including several G-protein-coupled receptors, one regulator of G protein signaling, and two cAMP phosphodiesterases, were disrupted by deletion of PoPlp1. These results confirm the positive function of PoPlp1 in the G protein–cAMP signaling pathway. This functional analysis of PoPlp1 will be very beneficial for further study of the regulatory mechanisms of cellulase expression and other biological processes in P. oxalicum 114-2 via the G protein–cAMP signaling pathway.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3