Regulator of G Protein Signaling Proteins Control Growth, Development and Cellulase Production in Neurospora crassa

Author:

Cabrera Ilva E.ORCID,Oza YagnaORCID,Carrillo Alexander J.,Collier Logan A.,Wright Sara J.,Li Liande,Borkovich Katherine A.ORCID

Abstract

Heterotrimeric (αβγ) G protein signaling pathways are critical environmental sensing systems found in eukaryotic cells. Exchange of GDP for GTP on the Gα subunit leads to its activation. In contrast, GTP hydrolysis on the Gα is accelerated by Regulator of G protein Signaling (RGS) proteins, resulting in a return to the GDP-bound, inactive state. Here, we analyzed growth, development and extracellular cellulase production in strains with knockout mutations in the seven identified RGS genes (rgs-1 to rgs-7) in the filamentous fungus, Neurospora crassa. We compared phenotypes to those of strains with either knockout mutations or expressing predicted constitutively activated, GTPase-deficient alleles for each of the three Gα subunit genes (gna-1Q204L, gna-2Q205L or gna-3Q208L). Our data revealed that six RGS mutants have taller aerial hyphae than wild type and all seven mutants exhibit reduced asexual sporulation, phenotypes shared with strains expressing the gna-1Q204L or gna-3Q208L allele. In contrast, Δrgs-1 and Δrgs-3 were the only RGS mutants with a slower growth rate phenotype, a defect in common with gna-1Q204L strains. With respect to female sexual development, Δrgs-1 possessed defects most similar to gna-3Q208L strains, while those of Δrgs-2 mutants resembled strains expressing the gna-1Q204L allele. Finally, we observed that four of the seven RGS mutants had significantly different extracellular cellulase levels relative to wild type. Of interest, the Δrgs-2 mutant had no detectable activity, similar to the gna-3Q208L strain. In contrast, the Δrgs-1 and Δrgs-4 mutants and gna-1Q204L and gna-2Q205L strains exhibited significantly higher cellulase activity than wild type. With the exception of sexual development, our results demonstrate the greatest number of genetic interactions between rgs-1 and gna-1 and rgs-2 and gna-3 in N. crassa.

Funder

National Institutes of Health

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3