Functional Study of cAMP-Dependent Protein Kinase A in Penicillium oxalicum

Author:

Sun Qiuyan1,Xu Gen1,Li Xiaobei1,Li Shuai1,Jia Zhilei1,Yan Mengdi1,Chen Wenchao1,Shi Zhimin1,Li Zhonghai1ORCID,Chen Mei1

Affiliation:

1. State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China

Abstract

Signaling pathways play a crucial role in regulating cellulase production. The pathway mediated by signaling proteins plays a crucial role in understanding how cellulase expression is regulated. In this study, using affinity purification of ClrB, we have identified sixteen proteins that potentially interact with ClrB. One of the proteins, the catalytic subunit of cAMP-dependent protein kinase A (PoPKA-C), is an important component of the cAMP/PKA signaling pathway. Knocking out PoPKA-C resulted in significant decreases in the growth, glucose utilization, and cellulose hydrolysis ability of the mutant strain. Furthermore, the cellulase activity and gene transcription levels were significantly reduced in the ΔPoPKA-C mutant, while the expression activity of CreA, a transcriptional regulator of carbon metabolism repression, was notably increased. Additionally, deletion of PoPKA-C also led to earlier timing of conidia production. The expression levels of key transcription factor genes stuA and brlA, which are involved in the production of the conidia, showed significant enhancement in the ΔPoPKA-C mutant. These findings highlight the involvement of PoPKA-C in mycelial development, conidiation, and the regulation of cellulase expression. The functional analysis of PoPKA-C provides insights into the mechanism of the cAMP/PKA signaling pathway in cellulase expression in filamentous fungi and has significant implications for the development of high-yielding cellulase strains.

Funder

Natural Science Foundation of Shandong Province

Qilu University of Technology

scientific research project of Qilu University of Technology

Shandong and Chongqing Science and Technology Cooperation Project

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3