Reproducible Digital Restoration of Fossils Using Blender

Author:

DeVries Raina P.,Sereno Paul C.,Vidal Daniel,Baumgart Stephanie L.

Abstract

Digital restoration of fossils based on computed tomographic (CT) imaging and other scanning technologies has become routine in paleontology. Digital restoration includes the retrodeformation and reconstruction of a fossil specimen. The former involves modification of the original 3D model to reverse post-mortem brittle and plastic deformation; and the latter involves the infilling of fractures, addition of missing pieces, and smoothing of the mesh surface. The restoration process often involves digital editing of the specimen in ways that are difficult to document and reproduce. To record all actions taken during the digital restoration of a fossil, we outline a workflow that generates both the restored bone and the sequence of steps involved in its retrodeformation and reconstruction. Our method can also generate an animation showing the transformation of the original digital model into its final form. We applied this method to a dorsal rib and frontal bone of a small-bodied Jurassic-age armored dinosaur from Africa, the digital restoration of which engaged all modalities of deformation (translation, rotation, scaling, distortion) and reconstruction (fracture infilling, adding missing bone, surface smoothing). Each bone was CT-scanned, segmented, and imported into Blender, an open-source 3D-graphics animation program. Blender has an animation tool called an “armature” that allows for precise control over portions of a surface mesh while keeping a record of manipulations. To retrodeform a fossil, an armature is created and then linked, or “rigged,” to the fossil in order to control the displacement and distortion of its fragments. After using the armature to perform retrodeformation, we use Blender to record the movement and distortion of each fragment and also record reconstructive modifications. By ensuring documentation and reproducibility in an open-source program, our workflow and output open a window onto the heretofore largely hidden process of digital restoration in paleontology.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference27 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3