Back to life: Techniques for developing high-quality 3D reconstructions of plants and animals from digitized specimens

Author:

Clark Elizabeth G.ORCID,Jenkins Kelsey M.,Brodersen Craig R.

Abstract

Expanded use of 3D imaging in organismal biology and paleontology has substantially enhanced the ability to visualize and analyze specimens. These techniques have improved our understanding of the anatomy of many taxa, and the integration of downstream computational tools applied to 3D datasets have broadened the range of analyses that can be performed (e.g., finite element analyses, geometric morphometrics, biomechanical modeling, physical modeling using 3D printing). However, morphological analyses inevitably present challenges, particularly in fossil taxa where taphonomic or preservational artifacts distort and reduce the fidelity of the original morphology through shearing, compression, and disarticulation, for example. Here, we present a compilation of techniques to build high-quality 3D digital models of extant and fossil taxa from 3D imaging data using freely available software for students and educators. Our case studies and associated step-by-step supplementary tutorials present instructions for working with reconstructions of plants and animals to directly address and resolve common issues with 3D imaging data. The strategies demonstrated here optimize scientific accuracy and computational efficiency and can be applied to a broad range of taxa.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference49 articles.

1. A method for the investigation of fossils by serial sections:;WJ Sollas;Philosophical Transactions of the Royal Society of London, Series B,1903

2. A parallel grinding instrument for the investigation of fossils by serial sections;WN Croft;Journal of Paleontology,1950

3. Virtual paleontology—an overview.;M Sutton;The Paleontological Society Papers,2017

4. A 3D anatomical atlas of appendage musculature in the chelicerate arthropod Limulus polyphemus.;RDC Bicknell;PLOS ONE,2018

5. Crabs in amber reveal an early colonization of freshwater during the Cretaceous;J Luque;Science Advances,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3