Cranial anatomy and phylogenetic affinities of Bolosaurus major, with new information on the unique bolosaurid feeding apparatus and evolution of the impedance‐matching ear

Author:

Jenkins Kelsey M.12ORCID,Foster William3ORCID,Napoli James G.456ORCID,Meyer Dalton L.1ORCID,Bever Gabriel S.37ORCID,Bhullar Bhart‐Anjan S.12ORCID

Affiliation:

1. Department of Earth and Planetary Sciences Yale University New Haven Connecticut USA

2. Yale Peabody Museum New Haven Connecticut USA

3. Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine Baltimore Maryland USA

4. Division of Paleontology North Carolina Museum of Natural Sciences Raleigh North Carolina USA

5. Department of Biological Sciences North Carolina State University Raleigh North Carolina USA

6. Division of Paleontology American Museum of Natural History New York New York USA

7. Department of Earth and Planetary Sciences Johns Hopkins University Baltimore Maryland USA

Abstract

AbstractResolving the phylogenetic relationships of early amniotes, in particular stem reptiles, remains a difficult problem. Three‐dimensional morphological analysis of well‐preserved stem‐reptile specimens can reveal important anatomical data and clarify regions of phylogeny. Here, we present the first thorough description of the unusual early Permian stem reptile Bolosaurus major, including the first comprehensive description of a bolosaurid braincase. We describe previously obscured details of the palate, allowing for insight into bolosaurid feeding mechanics. Aspects of the rostrum, palate, mandible, and neurocranium suggest that B. major had a particularly strong bite. We additionally found B. major has a surprisingly slender stapes, similar to that of the middle Permian stem reptile Macroleter poezicus, which may suggest enhanced hearing abilities compared to other Paleozoic amniotes (e.g., captorhinids). We incorporated our new anatomical information into a large phylogenetic matrix (150 OTUs, 590 characters) to explore the relationship of Bolosauridae among stem reptiles. Our analyses generally recovered a paraphyletic “Parareptilia,” and found Bolosauridae to diverge after Captorhinidae + Araeoscelidia. We also included B. major within a smaller matrix (10 OTUs, 27 characters) designed to explore the interrelationships of Bolosauridae and found all species of Bolosaurus to be monophyletic. While reptile relationships still require further investigation, our phylogeny suggests repeated evolution of impedance‐matching ears in Paleozoic stem reptiles.

Funder

National Science Foundation

Institute for Biospheric Studies, Yale University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3