VIRTUAL PALEONTOLOGY—AN OVERVIEW

Author:

Sutton Mark,Rahman Imran,Garwood Russell

Abstract

AbstractVirtual paleontology is the study of fossils through three-dimensional digital visualizations; it represents a powerful and well-established set of tools for the analysis and dissemination of fossil data. Techniques are divisible into tomographic (i.e., slice-based) and surface-based types. Tomography has a long predigital history, but the recent explosion of virtual paleontology has resulted primarily from developments in X-ray computed tomography (CT), and of surface-based technologies (e.g., laser scanning). Destructive tomographic methods include forms of physical-optical tomography (e.g., serial grinding); these are powerful but problematic techniques. Focused Ion Beam (FIB) tomography is a modern alternative for microfossils; it is also destructive but is capable of extremely high resolutions. Nondestructive tomographic methods include the many forms of CT, which are the most widely used data-capture techniques at present, but are not universally applicable. Where CT is inappropriate, other nondestructive technologies (e.g., neutron tomography, magnetic resonance imaging, optical tomography) can prove suitable. Surface-based methods provide portable and convenient data capture for surface topography and texture, and might be appropriate when internal morphology is not of interest; technologies include laser scanning, photogrammetry, and mechanical digitization. Reconstruction methods that produce visualizations from raw data are many and various; selection of an appropriate workflow will depend on many factors, but is an important consideration that should be addressed prior to any study. The vast majority of three-dimensional fossils can now be studied using some form of virtual paleontology, and barriers to broader adaptation are being eroded. Technical issues regarding data sharing remain problematic. Technological developments continue; those promising tomographic recovery of compositional data are of particular relevance to paleontology.

Publisher

Cambridge University Press (CUP)

Reference80 articles.

1. Imaging fossils using reflectance transformation and interactive manipulation of virtual light sources;Hammer;Palaeontologia Electronica,2002

2. XII - On the internal structure of some mesozoic brachiopoda

3. Microanatomy of Early Devonian book lungs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3